Source code for agi_core.managers.agi_cluster.agi_cluster

# BSD 3-Clause License
#
# Copyright (c) 2025, Jean-Pierre Morard, THALES SIX GTS France SAS
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
# 3. Neither the name of Jean-Pierre Morard nor the names of its contributors, or THALES SIX GTS France SAS, may be used to endorse or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Any, Dict, List, Optional, Union, Tuple, Set  # Ajoute Tuple et Set
from IPython.lib import backgroundjobs as bg
import asyncio
import getpass
import glob
import importlib
import io
import os
import pickle
import random
import re
import shutil
import socket
import sys
import time
import warnings
from copy import deepcopy
from datetime import timedelta
from ipaddress import ip_address as is_ip
from pathlib import Path, PurePosixPath, PureWindowsPath
from tempfile import gettempdir
from typing import Any, Dict, List, Optional, Union
import sysconfig
from contextlib import redirect_stdout, redirect_stderr
import errno

# External Libraries
import asyncssh
from asyncssh.process import ProcessError
from contextlib import asynccontextmanager
import humanize
import numpy as np
import polars as pl
import psutil
from dask.distributed import Client
import json
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import subprocess
import logging
import runpy

# Project Libraries:
from agi_env import AgiEnv, normalize_path
from agi_core.managers.agi_manager import AgiManager
from agi_core.workers.agi_worker import AgiWorker

# os.environ["DASK_DISTRIBUTED__LOGGING__DISTRIBUTED__LEVEL"] = "INFO"
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore")
workers_default = {socket.gethostbyname("localhost"): 1}


[docs] class AGI: """ Agi Class. Agi (Speedy-Python-Dask) is a scalable fwk based on Cython, Dask, and a pool of processes that supports High-Performance Computing (HPC) with or without output data. It offers a command-line interface in Python and an optional LAB with Streamlit, featuring advanced capabilities like embedded ChatGPT and visualizations. Agi stands for Speedy-Python-Dask. **To run on a cluster:** 1. Create a Agi account on each host with SSH access. 2. Copy your project's `pyproject.toml` to each host. 3. Run `uv sync` before using AGI. 4. To run with output data, provide a shared directory accessible from all hosts. Use this directory in your Python target code as both input and output. **Remarks:** - Interactive Matplotlib graphics are not supported by Jupyter Lab. Use Jupyter Notebook instead. - While debugging in a Jupyter cell, it's better to comment out `#%%time` to allow line numbers to display correctly. """ # Constants as class attributes TIMEOUT = 10 PYTHON_MODE = 1 CYTHON_MODE = 2 DASK_MODE = 4 RAPIDS_MODE = 16 INSTALL_MASK = 0b11 << DASK_MODE INSTALL_MODE = 0b01 << DASK_MODE UPDATE_MODE = 0b10 << DASK_MODE SIMULATE_MODE = 0b11 << DASK_MODE DEPLOYEMENT_MASK = 0b110000 RUN_MASK = 0b001111 RAPIDS_SET = 0b111111 RAPIDS_RESET = 0b110111 DASK_RESET = 0b111011 _args: Optional[Dict[str, Any]] = None _dask_client: Optional[Client] = None _dask_scheduler: Optional[Any] = None _dask_workers: Optional[List[str]] = None _jobs: Optional[bg.BackgroundJobManager] = None _local_ip: List[str] = [] _install_done_local: bool = False _mode: Optional[int] = None _mode_auto: bool = False _remote_ip: List[str] = [] _install_done: bool = False _install_todo: Optional[int] = 0 _scheduler: Optional[str] = None _scheduler_ip: Optional[str] = None _target: Optional[str] = None _verbose: Optional[int] = None _worker_init_error: bool = False workers: Optional[Dict[str, int]] = None _capacity: Optional[Dict[str, float]] = None _capacity_data_file: Optional[Path] = None _capacity_model_file: Optional[Path] = None _capacity_predictor: Optional[RandomForestRegressor] = None _worker_default: Dict[str, int] = workers_default _run_time: Dict[str, Any] = {} _run_type: Optional[str] = None _run_types: List[str] = [] _sys_path_to_clean: List[str] = [] _target_built: Optional[Any] = None _module_to_clean: List[str] = [] _ssh_connections = {} best_mode: Dict[str, Any] = {} workers_tree: Optional[Any] = None workers_tree_info: Optional[Any] = None debug: Optional[bool] = None # Cache with default local IPs env: Optional[AgiEnv] = None
[docs] def __init__(self, target: str, verbose: int = 1): """ Initialize a Agi object with a target and verbosity level. Args: target (str): The target for the env object. verbose (int): Verbosity level (0-3). Returns: None Raises: None """ # At the top of __init__: if hasattr(AGI, "_instantiated") and AGI._instantiated: raise RuntimeError("AGI class is a singleton. Only one instance allowed per process.") AGI._instantiated = True
[docs] @staticmethod async def run( target: str, env: AgiEnv, # some_default_value must be defined scheduler: Optional[str] = None, workers: Optional[Dict[str, int]] = None, verbose: int = 0, mode: Optional[Union[int, List[int], str]] = None, rapids_enabled: bool = False, **args: Any, ) -> Any: """ Compiles the target module in Cython and runs it on the cluster. Args: target (str): The target Python module to run. scheduler (str, optional): IP and port address of the Dask scheduler. Defaults to '127.0.0.1:8786'. workers (dict, optional): Dictionary of worker IPs and their counts. Defaults to `workers_default`. verbose (int, optional): Verbosity level. Defaults to 0. mode (int or list, optional): Mode(s) for execution. Defaults to None. - Bitmask `0b----` (4 bits) where each bit enables/disables specific features: - `1---`: Rapids - `-1--`: Dask - `--1-`: Cython - `---1`: Pool - `mode` can also be a list of modes to chain for the run. rapids_enabled (bool, optional): Flag to enable RAPIDS. Defaults to False. **args (Any): Additional keyword arguments. Returns: Any: Result of the execution. Raises: ValueError: If `mode` is invalid. RuntimeError: If the target module fails to load. """ AGI.env = env env.active(target, env.install_type) if not workers: workers = workers_default elif not isinstance(workers, dict): raise ValueError("workers must be a dict. {'ip-address':nb-worker}") AGI.target_path = env.module_path AGI._target = env.target AGI._rapids_enabled = rapids_enabled logging.info(f"AGI instance created for target {target} with verbosity {env.verbose}") if mode is None or isinstance(mode, list): mode_range = range(8) if mode is None else sorted(mode) return await AGI._run_all_modes( target, env, scheduler, workers, verbose, mode_range, rapids_enabled, **args ) else: if isinstance(mode, str): pattern = r"^[dcrp]+$" if not re.fullmatch(pattern, mode.lower()): logging.info("parameter <mode> must only contain the letters 'd', 'c', 'r', 'p'") sys.exit(1) AGI._mode = env.mode2int(mode) elif isinstance(mode, int): AGI._mode = int(mode) else: logging.info("parameter <mode> must be an int, a list of int or a string") sys.exit(1) AGI._run_types = ["run", "sync --upgrade", "sync --upgradeƒ", "simulate"] if AGI._mode: if AGI._mode & AGI.RUN_MASK not in range(0, AGI.RAPIDS_MODE): raise ValueError(f"mode {AGI._mode} not implemented") else: # 16 first modes are "run" type, then there 16, 17 and 18 AGI._run_type = AGI._run_types[(AGI._mode & AGI.DEPLOYEMENT_MASK) >> AGI.DASK_MODE] AGI._args = args AGI._verbose = verbose AGI.workers = workers AGI._run_time = {} AGI._capacity_data_file = env.resource_path / "balancer_df.csv" AGI._capacity_model_file = env.resource_path / "balancer_model.pkl" path = Path(AGI._capacity_model_file) if path.is_file(): with open(path, "rb") as f: AGI._capacity_predictor = pickle.load(f) else: AGI._train_model(env.home_abs) # import of derived Class of AgiManager, name target_inst which is typically instance of Flight or MyCode AGI.agi_workers = { "PolarsWorker": "polars-worker", "PandasWorker": "pandas-worker", "DagWorker": "dag-worker", "AgentWorker": "agent-worker", } # AGI.install_worker_group = AGI.agi_workers[env.base_worker_cls] AGI.install_worker_group = ["agi-worker ", AGI.agi_workers[env.base_worker_cls]] base_worker_dir = str(env.workers_root / "src") if base_worker_dir not in sys.path: sys.path.insert(0, base_worker_dir) AGI._target_module = await AGI._load_module( AGI._target, env.module, path=env.app_src, ) if not AGI._target_module: raise RuntimeError(f"failed to load {AGI._target}") target_class = getattr(AGI._target_module, env.target_class) AGI._target_inst = target_class(env, **args) try: return await AGI.main(scheduler) except ProcessError as e: logging.error(f"failed to run \n{e}") return except ConnectionError as e: logging.error(f"failed to connect \n{e}") return except Exception as err: logging.error(f"Unhandled exception in AGI.run: {err}", exc_info=True) raise
@staticmethod async def _run_all_modes( target: str, env: AgiEnv, scheduler: Optional[str] = None, workers: Optional[Dict[str, int]] = None, verbose: int = 0, mode_range: Optional[Union[List[int], range]] = None, rapids_enabled: Optional[bool] = None, **args: Any, ) -> str: """ Run all modes to find the fastest one. Returns: dict: A dictionary where keys are each mode (from mode_range) and values are dicts with keys including: - "mode": an identifying string for the mode, - "timing": a human-readable formatted string of the runtime, - "time": the runtime in seconds (as a float), - "order": the rank order (an integer, 1 for fastest, etc.). """ AGI._mode_auto = True rapids_mode_mask = AGI.RAPIDS_SET if rapids_enabled else AGI.RAPIDS_RESET runs = {} if env.benchmark.exists(): os.remove(env.benchmark) for m in mode_range: # Determine which run mode to use. run_mode = m & rapids_mode_mask if rapids_enabled else m # Run the target with the current mode. run = await AGI.run( target, env, scheduler=scheduler, workers=workers, verbose=verbose, mode=run_mode, **args, ) if isinstance(run, str): # Assume run string splits into two parts: # runtime[0] -> an identifying string for the mode, # runtime[1] -> the time in seconds as a float runtime = run.split() if len(runtime) < 2: raise ValueError(f"Unexpected run format: {run}") runtime_float = float(runtime[1]) # Store in dictionary with key m runs[m] = { "mode": runtime[0], "timing": humanize.precisedelta(timedelta(seconds=runtime_float)), "seconds": runtime_float, } # Sort the runs by "seconds" (fastest to slowest) and assign order values. ordered_runs = sorted(runs.items(), key=lambda item: item[1]["seconds"]) for idx, (mode_key, run_data) in enumerate(ordered_runs, start=1): run_data["order"] = idx # The fastest run is the first in the ordered list. if not ordered_runs: raise RuntimeError("No ordered runs available after sorting.") best_mode_key, best_run_data = ordered_runs[0] # Calculate delta based on "seconds" for m in runs: runs[m]["delta"] = runs[m]["seconds"] - best_run_data["seconds"] AGI.best_mode[target] = best_run_data AGI._mode_auto = False # Convert numeric keys to strings for valid JSON output. runs_str_keys = {str(k): v for k, v in runs.items()} # Return a JSON-formatted string with open(env.benchmark, "w") as f: json.dump(runs_str_keys, f) return json.dumps(runs_str_keys)
[docs] @staticmethod def get_default_local_ip() -> str: """ Get the default local IP address of the machine. Returns: str: The default local IP address. Raises: Exception: If unable to determine the local IP address. """ """ """ try: # Attempt to connect to a non-local address and capture the local endpoint's IP with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s: s.connect(("8.8.8.8", 80)) return s.getsockname()[0] except Exception: return "Unable to determine local IP"
[docs] @staticmethod def find_free_port(start: int = 5000, end: int = 10000, attempts: int = 100) -> int: for _ in range(attempts): port = random.randint(start, end) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: # set SO_REUSEADDR to avoid 'address already in use' issues during testing sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) try: sock.bind(("localhost", port)) # if binding succeeds, the port is free; close socket and return port return port except OSError: # port is already in use, try another continue raise RuntimeError("No free port found in the specified range.")
@staticmethod def _get_scheduler(ip_sched: Optional[Union[str, Dict[str, int]]] = None) -> Tuple[str, int]: """get scheduler ip V4 address when no scheduler provided, scheduler address is localhost or the first address if workers are not local. port is random Args: ip_sched: Returns: """ port = AGI.find_free_port() if not ip_sched: if AGI.workers: ip = list(AGI.workers)[0] else: ip = socket.gethostbyname("localhost") elif isinstance(ip_sched, dict): # end-user already has provided a port ip, port = list(ip_sched.items())[0] elif not isinstance(ip_sched, str): raise ValueError("Scheduler ip address is not valid") else: ip = ip_sched AGI._scheduler = f"{ip}:{port}" return ip, port @staticmethod async def _load_module( module: str, package: Optional[str] = None, path: Optional[Union[str, Path]] = None, ) -> Any: """load a module Args: module: the name of the Agi apps module package: the package name where is the module (Default value = None) path: the path where is the package (Default value = None) Returns: : the instance of the module """ path = normalize_path(path) if path not in sys.path: sys.path.insert(0, path) AGI._sys_path_to_clean.append(path) logging.info(f"import {module} from {package} located in {path}") try: if package: # Import module from a package return importlib.import_module(f"{package}.{module}") else: # Import module directly return importlib.import_module(module) except ModuleNotFoundError as e: module_to_install = (str(e).replace("No module named ", "").lower().replace("'", "")) app_path = AGI.env.app_abs cmd = f"{env.uv} --upgrade add {module_to_install}" logging.info(f"{cmd} from {app_path}") await AgiEnv.run(cmd, app_path) AGI._module_to_clean.append(module_to_install) return await AGI._load_module(module, package, path) @staticmethod def _get_stdout(func: Any, *args: Any, **kwargs: Any) -> Tuple[str, Any]: """to get the stdout stream Args: func: param args: kwargs: return: the return of the func *args: **kwargs: Returns: : the return of the func """ f = io.StringIO() with redirect_stdout(f): result = func(*args, **kwargs) return f.getvalue(), result @staticmethod def _read_stderr(output_stream: Any) -> None: """Read remote stderr robustly on Linux (UTF-8), Windows OEM (CP850), then ANSI (CP1252).""" def decode_bytes(bs: bytes) -> str: # try UTF-8, then OEM (CP850) for console accents, then ANSI (CP1252) for enc in ('utf-8', 'cp850', 'cp1252'): try: return bs.decode(enc) except Exception: continue # final fallback return bs.decode('cp850', errors='replace') chan = getattr(output_stream, 'channel', None) if chan is None: # simple iteration fallback for raw in output_stream: if isinstance(raw, bytes): decoded = decode_bytes(raw) else: decoded = decode_bytes(raw.encode('latin-1', errors='replace')) line = decoded.strip() logging.info(line) AGI._worker_init_error = line.endswith('[ProjectError]') return # non-blocking channel read while True: if chan.recv_stderr_ready(): try: raw = chan.recv_stderr(1024) except Exception: continue if not raw: break decoded = decode_bytes(raw) for part in decoded.splitlines(): line = part.strip() logging.info(line) AGI._worker_init_error = line.endswith('[ProjectError]') elif chan.exit_status_ready(): break else: time.sleep(0.1) @staticmethod async def _kill(ip: Optional[str] = None, current_pid: Optional[int] = None, force: bool = True) -> Optional[Any]: """ Terminate 'uv' and Dask processes on the given host and clean up pid files. Args: ip (str, optional): IP address of the host to kill processes on. Defaults to local host. current_pid (int, optional): PID of this process to exclude. Defaults to this process. force (bool, optional): Whether to kill all 'dask' processes by name. Defaults to True. Returns: The result of the last kill command (dict or None). """ env = AGI.env uv = env.uv localhost = socket.gethostbyname("localhost") ip = ip or localhost current_pid = current_pid or os.getpid() # 1) Collect PIDs from any pid files and remove those files pids_to_kill: list[int] = [] for pid_file in Path(env.wenv_abs.parent).glob("*.pid"): try: text = pid_file.read_text().strip() pid = int(text) if pid != current_pid: pids_to_kill.append(pid) except Exception: AGI.env.log_warning(f"Could not read PID from {pid_file}, skipping") try: pid_file.unlink() except Exception as e: AGI.env.log_warning(f"Failed to remove pid file {pid_file}: {e}") cmds: list[str] = [] clean_rel = env.wenv_rel.parent / "cli.py" clean_abs = env.wenv_abs.parent / clean_rel.name cmd_prefix = env.envars.get(f"{ip}_CMD_PREFIX", "") if env.is_local(ip): kill_prefix = f'{cmd_prefix}{uv} run -p {env.python_version} python' shutil.copy(env.manager_root / "agi_cluster/cli.py", clean_abs) if force: cmd = f"{kill_prefix} {clean_abs} kill" cmds.append(cmd) else: #await env.send_file(ip, env.manager_root / "agi_cluster/cli.py", clean_rel.parent) kill_prefix = f'{cmd_prefix}{uv} run -p {env.python_version} python' if force: cmd = f"{kill_prefix} {clean_rel}" cmds.append(cmd) # 3) If we found any explicit pid files, terminate those PIDs if pids_to_kill: cmds.append( f'{kill_prefix} -c "import os, psutil; ' f"pids={pids_to_kill}; " "[psutil.Process(p).kill() for p in pids if p!=os.getpid()]" '"' ) last_res = None for cmd in cmds: # choose working directory based on local vs remote cwd = env.manager_root if ip == localhost else str(env.wenv_abs) if env.is_local(ip): if env.debug: sys.argv = cmd.split('python ')[1].split(" ") runpy.run_path(sys.argv[0], run_name="__main__") else: await AgiEnv.run(cmd, cwd) else: cli = env.wenv_rel.parent / "cli.py" #await env.send_file(ip, env.manager_root / "agi_cluster/cli.py", cli.parent) last_res = await AGI.exec_ssh(ip, cmd) # handle tuple or dict result if isinstance(last_res, dict): out = last_res.get("stdout", "") err = last_res.get("stderr", "") logging.info(out) if err: logging.error(err) return last_res @staticmethod def _clean_dirs_local() -> None: """Clean up local worker env directory Args: wenv: worker environment dictionary Returns: """ me = getpass.getuser() self_pid = os.getpid() for p in psutil.process_iter(['pid', 'username', 'cmdline']): try: if ( p.info['username'] and p.info['username'].endswith(me) and p.info['pid'] and p.info['pid'] != self_pid and p.info['cmdline'] and any('dask' in s.lower() for s in p.info['cmdline']) ): p.kill() except (psutil.NoSuchProcess, psutil.AccessDenied): pass for d in [ f"{gettempdir()}/dask-scratch-space", f"{AGI.env.wenv_abs}", ]: try: shutil.rmtree(d, ignore_errors=True) except: pass @staticmethod async def _clean_dirs(ip: str) -> None: """Clean up remote worker Args: ip: address of remote worker Returns: """ env = AGI.env uv = env.uv wenv_rel = env.wenv_rel wenv_abs = env.wenv_abs if wenv_abs.exists(): env.remove_dir_forcefully(str(wenv_abs)) os.makedirs(wenv_abs / "src", exist_ok=True) cmd_prefix = env.envars.get(f"{ip}_CMD_PREFIX", "") wenv = env.wenv_rel cli = wenv.parent / 'cli.py' cmd = (f"{cmd_prefix}{uv} run -p {env.python_version} python {cli} clean {wenv}") await AGI.exec_ssh(ip, cmd) @staticmethod async def _clean_nodes(scheduler: Optional[str], force: bool = True) -> Set[str]: # Compose list of IPs: workers plus scheduler's IP list_ip = set(list(AGI.workers) + [AGI._get_scheduler(scheduler)[0]]) localhost_ip = socket.gethostbyname("localhost") if not list_ip: list_ip.add(localhost_ip) for ip in list_ip: if AgiEnv.is_local(ip): # Assuming this cleans local dirs once per IP (or should be once per call) AGI._clean_dirs_local() AGI._clean_remote_procs() AGI._clean_remote_dirs() return list_ip @staticmethod async def _clean_remote_procs() -> None: tasks = [] for ip in list_ip: if not AgiEnv.is_local(ip): tasks.append(asyncio.create_task(AGI._kill(ip, os.getpid(), force=force))) if tasks: await asyncio.gather(*tasks) @staticmethod async def _clean_remote_dirs() -> None: tasks = [] for ip in list_ip: tasks.append(asyncio.create_task(AGI._clean_dirs(ip))) if tasks: await asyncio.gather(*tasks) @staticmethod async def _install_cluster(scheduler: Optional[str]) -> None: """ Validate and prepare each remote node in the cluster: - Verify each IP is valid and reachable. - Detect and install Python interpreters if missing. - Detect and install 'uv' CLI via pip if missing. - Use 'uv' to install the specified Python version, create necessary directories, and install packages. """ list_ip = set(list(AGI.workers) + [AGI._get_scheduler(scheduler)[0]]) localhost_ip = socket.gethostbyname("localhost") env = AGI.env clean_rel = env.wenv_rel.parent / "cli.py" # You can remove this check or keep it if you expect no scheduler/workers (rare) if not list_ip: list_ip.add(localhost_ip) # Validate IPs for ip in list_ip: if not env.is_local(ip) and not is_ip(ip): raise ValueError(f"Invalid IP address: {ip}") #else: #await env.send_file(ip, env.manager_root / "agi_cluster/cli.py", clean_rel.parent) # Prepare each remote node (skip local) AGI.list_ip = list_ip for ip in list_ip: if env.is_local(ip): continue wenv_rel = env.wenv_rel pyvers = env.python_version # 1) Check if need to export path (linux and macos) cmd_prefix = await AGI._detect_export_cmd(ip) env.set_env_var(f"{ip}_CMD_PREFIX", cmd_prefix) uv_is_installed = True # 2) Check uv try: await AGI.exec_ssh(ip, f"{cmd_prefix}{env.uv} --version") await AGI.exec_ssh(ip, f"{cmd_prefix}{env.uv} self update") except Exception: uv_is_installed = False # Try Windows installer try: await AGI.exec_ssh(ip, 'powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"' ) uv_is_installed = True except Exception: uv_is_installed = False # Fallback to Unix installer await AGI.exec_ssh(ip, 'curl -LsSf https://astral.sh/uv/install.sh | sh') await AGI.exec_ssh(ip, 'source $HOME/.local/bin/env') uv_is_installed = True if not uv_is_installed: logging.error("Failed to install uv") raise EnvironmentError("Failed to install uv") # 3) Install Python await AGI.exec_ssh(ip, f"{cmd_prefix}{env.uv} python install {pyvers}") await env.send_file(ip, env.manager_root / "agi_cluster/cli.py", env.wenv_rel.parent) await AGI._kill(ip, force=True) await AGI._clean_dirs(ip) cmd = ( f"{cmd_prefix}{env.uv} --project {wenv_rel} init --bare --no-workspace" ) await AGI.exec_ssh(ip, cmd) # cmd = f"{cmd_prefix}{env.uv} --project {wenv_rel} add psutil" # await AGI.exec_ssh(ip, cmd) @staticmethod async def _install(scheduler: Optional[str]) -> None: AGI._initialize_installation() env = AGI.env app_path = env.app_abs wenv_rel = env.wenv_rel wenv_abs = env.wenv_abs pyvers = env.python_version extras = "--dev -p " + pyvers + env.python_variante extras += " --config-file uv.toml" if AGI._rapids_enabled else "" options = {"manager": extras, "worker": extras} if isinstance(env.base_worker_cls, str): options["worker"] += " --extra " + " --extra ".join(AGI.install_worker_group) #node_ips = await AGI._clean_nodes(scheduler) node_ips = set(list(AGI.workers) + [AGI._get_scheduler(scheduler)[0]]) AGI._venv_todo(node_ips) start_time = time.time() logging.info(f"******** Starting {AGI._run_type} for {app_path} in .env on 127.0.0.1") await AGI._install_app_local(app_path, Path(wenv_rel), options) # logging.info(AGI.run(cmd, wenv_abs)) if AGI._mode & 4: tasks = [] for ip in node_ips: logging.info(f"******** Starting {AGI._run_type} for Agi_worker in .venv on {ip}") if not env.is_local(ip): tasks.append(asyncio.create_task( AGI._install_app_remote(ip, env, wenv_rel, options["worker"]) )) await asyncio.gather(*tasks) if AGI._verbose: duration = AGI._format_duration(time.time() - start_time) logging.info(f"******** Agi {AGI._run_type} completed in {duration}") @staticmethod def _initialize_installation() -> None: """Initialize installation flags and run type.""" AGI._run_type = AGI._run_types[(AGI._mode & AGI.DEPLOYEMENT_MASK) >> 4] AGI._install_done_local = False AGI._install_done = False AGI._worker_init_error = False @staticmethod def _hardware_supports_rapids() -> bool: try: subprocess.run( ["nvidia-smi"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, ) return True except (subprocess.CalledProcessError, FileNotFoundError): return False @staticmethod async def _install_app_local(src: Path, wenv_rel: Path, options: Dict[str, str]) -> None: """ Installe l’environnement localement. Args: src: chemin vers la racine du projet local wenv_rel: chemin relatif vers l’environnement virtuel local options: dict contenant les options 'manager' et 'worker' pour la commande uv """ env = AGI.env pyvers = env.python_version + env.python_variante run_type = AGI._run_type ip = "127.0.0.1" has_rapids_hw = AGI._hardware_supports_rapids() and AGI._rapids_enabled env.has_rapids_hw = has_rapids_hw if has_rapids_hw: env.set_env_var(ip, "has_rapids_hw") else: env.set_env_var(ip, "no_rapids_hw") logging.info(f"Rapids-capable GPU[{ip}]: {has_rapids_hw}") # Commande pour manager selon si rapids supporté app_path = env.app_abs if has_rapids_hw: cmd_manager = f"{env.uv} --config-file uv.toml {run_type} {options['manager']} --extra managers --project {app_path}" else: cmd_manager = f"{env.uv} {run_type} {options['manager']} --extra managers --project {app_path}" logging.info(f"Installing manager: {cmd_manager}") await AgiEnv.run(cmd_manager, app_path) # Copier les fichiers pyproject.toml et setup_core dans wenv_abs wenv_abs = env.wenv_abs os.makedirs(wenv_abs, exist_ok=True) file = src / 'pyproject.toml' logging.info(f"Copying {file} -> {wenv_abs}") shutil.copy(file, wenv_abs / file.name) file = env.setup_core logging.info(f"Copying {file} -> {wenv_abs}") shutil.copy2(file, wenv_abs) # Commande pour workers selon si rapids supporté if has_rapids_hw: cmd_worker = f"{env.uv} --config-file uv.toml {run_type} --project {wenv_abs} {options['worker']} --extra workers" else: cmd_worker = f"{env.uv} {run_type} --project {wenv_abs} {options['worker']} --extra workers" logging.info(f"Installing workers: {cmd_worker}") await AgiEnv.run(cmd_worker, wenv_abs) # Build worker lib local wenv = await AGI._build_lib_local(is_local=True) # Lancer le script post_install cmd_post = f"{env.uv} --project {wenv} run python {env.app_abs / env.post_install} {env.target} {env.install_type} {env.data_rel}" logging.info(f"Running post-install script: {cmd_post}") await AgiEnv.run(cmd_post, wenv) # Cleanup modules await AGI._uninstall_modules() AGI._install_done_local = True @staticmethod async def _install_app_remote(ip: str, env: AgiEnv, wenv_rel: Path, option: str) -> None: """Install packages and set up the environment on a remote node.""" wenv_abs = env.wenv_abs wenv_rel = env.wenv_rel dist_rel = env.dist_rel dist_abs = env.dist_abs cmd_prefix = env.envars.get(f"{ip}_CMD_PREFIX", "") uv = cmd_prefix + env.uv pyvers = env.python_version + env.python_variante cmd = f"{uv} run python -c \"import os; os.makedirs('{dist_rel}', exist_ok=True)\"" await AGI.exec_ssh(ip, cmd) # Then send the files to the remote directory try: egg_file = next(iter(dist_abs.glob(f"{env.app}*.egg")), None) except StopIteration: logging.error(f"searching for {wenv_abs / env.app}*.egg") raise FileNotFoundError("no existing egg file") await env.send_files(ip, [env.setup_core, env.worker_pyproject, env.uvproject], wenv_rel) await env.send_file(ip, egg_file, dist_rel) cmd = ( f"{uv} --project {wenv_rel} run python -c \"import os, pathlib, zipfile;" f"root = pathlib.Path('{wenv_rel}');" f"root_src = root / 'src';" f"[zipfile.ZipFile(str(e)).extractall(str(root_src))" f"for e in (root / 'dist').glob('*.egg')]\"" ) await AGI.exec_ssh(ip, cmd) # 5) Check remote Rapids hardware support via nvidia-smi has_rapids_hw = False if AGI._rapids_enabled: check_rapids = 'nvidia-smi' try: result = await AGI.exec_ssh(ip, check_rapids) except Exception as e: logging.error(f"rapids is requested but not supported by node [{ip}]") raise has_rapids_hw = (result != "") and AGI._rapids_enabled env.has_rapids_hw = has_rapids_hw if has_rapids_hw: env.set_env_var(ip, "has_rapids_hw") logging.info(f"Rapids-capable GPU[{ip}]: {has_rapids_hw}") # 6) Build and run uv sync, adding --config-file only when has_rapids_hw if has_rapids_hw: sync_cmd = (f"{uv} sync --upgrade --project {wenv_rel} --config-file {wenv_rel / 'uv.toml'} {option}" f" --refresh-package dask") else: sync_cmd = f"{uv} sync --upgrade --project {wenv_rel} {option} --refresh-package dask " await AGI.exec_ssh(ip, sync_cmd) ##################################################### # install env & core for enabling dask worker spawn ###################################################### cmd = f"{uv} --project {wenv_rel} run python -m ensurepip" await AGI.exec_ssh(ip, cmd) cmd = f"{uv} --project {wenv_rel} run python -m pip install -e {wenv_rel}" await AGI.exec_ssh(ip, cmd) # build agi_env*.whl wenv = env.agi_env_root cmd = f"{uv} --project {wenv} build --wheel" await AgiEnv.run(cmd, venv=wenv) src = wenv / "dist" try: whl = next(iter(src.glob("agi_env*.whl"))) await env.send_file(ip, whl, dist_rel) except StopIteration: raise RuntimeError(cmd) cmd = f"{uv} --project {dist_rel} add --upgrade {dist_rel / whl.name}" await AGI.exec_ssh(ip, cmd) # build agi_core*.whl wenv = env.cluster_root src = wenv / "dist" cmd = f"{uv} --project {wenv} build --wheel" await AgiEnv.run(cmd, venv=wenv) try: whl = next(iter(src.glob("agi_core*.whl"))) await env.send_file(ip, whl, dist_rel) except StopIteration: raise RuntimeError(cmd) cmd = f"{uv} --project {dist_rel} add --upgrade {dist_rel / whl.name}" await AGI.exec_ssh(ip, cmd) # Post-install script cmd = f"{uv} --project {wenv_rel} run python {env.post_install_rel} --install-type 2 {env.data_rel}" await AGI.exec_ssh(ip, cmd) # build target_worker lib cmd = f"{uv} --project {wenv_rel} run python {wenv_rel / env.setup_app.name} build_ext -i 2 -b {wenv_rel}" await AGI.exec_ssh(ip, cmd) @staticmethod def _should_install_pip() -> bool: return str(getpass.getuser()).startswith("T0") and not (Path(sys.prefix) / "Scripts/pip.exe").exists() @staticmethod async def _uninstall_modules() -> None: """Uninstall specified modules.""" for module in AGI._module_to_clean: cmd = f"{env.uv} pip uninstall {module} -y" logging.info(f"Executing: {cmd}") await AgiEnv.run(cmd, AGI.env.agi_env_root) AGI._module_to_clean.clear() @staticmethod def _format_duration(seconds: float) -> str: """Format the duration from seconds to a human-readable format. Args: seconds (float): The duration in seconds. Returns: str: The formatted duration. """ return humanize.precisedelta(timedelta(seconds=seconds)) @staticmethod def _venv_todo(list_ip: Set[str]) -> None: """ Args: list_ip: return: Returns: """ t = time.time() AGI._local_ip, AGI._remote_ip = [], [] for ip in list_ip: (AGI._local_ip.append(ip) if AgiEnv.is_local(ip) else AGI._remote_ip.append(ip)) AGI._install_todo = 2 * len(AGI._remote_ip) logging.info(f"******** {AGI._install_todo} remote .venv to {AGI._run_type}")
[docs] @staticmethod async def install( module_name: str, env: AgiEnv, scheduler: Optional[str] = None, workers: Optional[Dict[str, int]] = None, modes_enabled: int = RUN_MASK, verbose: Optional[int] = None, **args: Any, ) -> None: """ Update the cluster's virtual environment. Args: module_name_or_path (str): The name of the module to install or the path to the module. list_ip (List[str], optional): A list of IPv4 addresses with SSH access. Each IP should have Python, `psutil`, and `pdm` installed. Defaults to None. modes_enabled (int, optional): Bitmask indicating enabled modes. Defaults to `0b0111`. verbose (int, optional): Verbosity level (0-3). Higher numbers increase the verbosity of the output. Defaults to 1. **args: Additional keyword arguments. Returns: bool: `True` if the installation was successful, `False` otherwise. Raises: ValueError: If `module_name_or_path` is invalid. ConnectionError: """ AGI._run_type = "sync" mode = (AGI.INSTALL_MODE | modes_enabled) await AGI.run(module_name, scheduler=scheduler, workers=workers, env=env, mode=mode, rapids_enabled=AGI.INSTALL_MODE & modes_enabled, verbose=verbose, **args)
[docs] @staticmethod async def update( module_name: str, scheduler: Optional[str] = None, workers: Optional[Dict[str, int]] = None, env: Optional[AgiEnv] = None, modes_enabled: int = RUN_MASK, verbose: Optional[int] = None, **args: Any, ) -> None: """ install cluster virtual environment Parameters ---------- package: any Agi target apps or project created with AGILAB list_ip: any ip V4 with ssh access and python (upto you to link it to python3) with psutil and uv synced mode_enabled: this is typically a mode mask to know for example if cython or rapids are required force_update: make a Spud.update before the installation, default is True verbose: verbosity [0-3] Returns ------- """ AGI._run_type = "upgrade" await AGI.run(module_name, scheduler=scheduler, workers=workers, env=env, mode=(AGI.UPDATE_MODE | modes_enabled) & AGI.DASK_RESET, rapids_enabled=AGI.UPDATE_MODE & modes_enabled, verbose=verbose, **args)
[docs] @staticmethod async def distribute( app: str, env: AgiEnv, scheduler: Optional[str] = None, workers: Optional[Dict[str, int]] = None, verbose: int = 0, **args: Any, ) -> Any: """ check the distribution with a dry run Parameters ---------- package: any Agi target apps or project created by AGILAB list_ip: any ip V4 with ssh access and python (upto you to link it to python3) with psutil and uv synced verbose: verbosity [0-3] Returns the distribution tree ------- """ AGI._run_type = "simulate" return await AGI.run(app, env, scheduler, workers, verbose, mode=AGI.SIMULATE_MODE, **args)
@staticmethod async def _start_scheduler(scheduler: Optional[str]) -> bool: """ Start Dask scheduler either locally or remotely. Returns: bool: True on success. Raises: FileNotFoundError: if worker initialization error occurs. SystemExit: on fatal error starting scheduler or Dask client. """ env = AGI.env clean_rel = env.wenv_rel.parent / "cli.py" if (AGI._mode_auto and AGI._mode == AGI.DASK_MODE) or not AGI._mode_auto: env.has_rapids_hw = True if AGI._mode & AGI.DASK_MODE: if scheduler is None: if list(AGI.workers) == ["127.0.0.1"]: scheduler = "127.0.0.1" else: logging.info("AGI.run(...scheduler='scheduler ip address' is required -> Stop") AGI._scheduler_ip, AGI._scheduler_port = AGI._get_scheduler(scheduler) # Clean worker for ip in list(AGI.workers): await env.send_file(ip, env.manager_root / "agi_cluster/cli.py", clean_rel.parent) if not env.envars.get(ip, None): env.has_rapids_hw = False try: await AGI._kill(ip, os.getpid(), force=True) except Exception as e: raise # clean scheduler try: await AGI._kill(AGI._scheduler_ip, os.getpid(), force=True) except Exception as e: raise toml_local = env.app_abs / "pyproject.toml" wenv_rel = env.wenv_rel wenv_abs = env.wenv_abs if env.is_local(AGI._scheduler_ip): await asyncio.sleep(1) # non-blocking sleep cmd = ( f"{env.uv} run --project {env.wenv_abs} dask scheduler --port {AGI._scheduler_port} " f"--host {AGI._scheduler_ip} --pid-file {wenv_abs.parent / 'dask_scheduler.pid' } " ) logging.info(f"Starting dask scheduler locally: {cmd}") result = AGI._exec_bg(cmd, env.app_abs) if result:# assuming _exec_bg is sync logging.info(result) else: # Create remote directory cmd = f"{env.uv} run -p {env.python_version} python -c \"import os; os.makedirs('{wenv_rel}', exist_ok=True)\"" await AGI.exec_ssh(AGI._scheduler_ip, cmd) toml_wenv = wenv_rel / "pyproject.toml" await env.send_file(AGI._scheduler_ip, toml_local, toml_wenv) cmd = ( f"{env.uv} --project {wenv_rel} run dask scheduler --port {AGI._scheduler_port} " f"--host {AGI._scheduler_ip} --pid-file dask_scheduler.pid" ) # Run scheduler asynchronously over SSH without awaiting completion (fire and forget) asyncio.create_task(AGI.exec_ssh_async(AGI._scheduler_ip, cmd)) try: await asyncio.sleep(1) # Give scheduler a moment to start client = await Client(AGI._scheduler, heartbeat_interval=5000, timeout=AGI.TIMEOUT) client.forward_logging() AGI._dask_client = client except Exception as e: logging.error("Dask Client instantiation trouble, run aborted due to:") logging.info(e) sys.exit(1) AGI._install_done = True if AGI._worker_init_error: raise FileNotFoundError(f"Please run AGI.install([{AGI._scheduler_ip}])") return True @staticmethod async def _detect_export_cmd(ip: str) -> Optional[str]: if AgiEnv.is_local(ip): return AgiEnv.export_local_bin # probe remote OS via SSH try: os_id = await AGI.exec_ssh(ip, "uname -s") except Exception: os_id = '' if any(x in os_id for x in ('Linux', 'Darwin', 'BSD')): return 'export PATH="$HOME/.local/bin:$PATH";export PYTHON_GIL=0;' else: return "" # 'set PATH=%USERPROFILE%\\.local\\bin;%PATH% &&' @staticmethod async def _start(scheduler: Optional[str]) -> bool: """_start( Start Dask workers locally and remotely, launching remote workers detached in background, compatible with Windows and POSIX. """ env = AGI.env # Start scheduler first if not await AGI._start_scheduler(scheduler): return False for i, (ip, n) in enumerate(AGI.workers.items()): is_local = env.is_local(ip) cmd_prefix = env.envars.get(f"{ip}_CMD_PREFIX", "") for j in range(n): try: logging.info(f"Starting worker #{i}.{j} on [{ip}]") pid_file = f"dask_worker_{i}_{j}.pid" if is_local: wenv_abs = env.wenv_abs cmd = ( # f'{export_cmd} ' f'{cmd_prefix}{env.uv} --project {wenv_abs} run dask worker tcp://{AGI._scheduler} --no-nanny ' f'--pid-file {wenv_abs / pid_file}' ) # Run locally in background (non-blocking) AGI._exec_bg(cmd, str(wenv_abs)) else: wenv_rel = env.wenv_rel cmd = f'{cmd_prefix}{env.uv} --project {wenv_rel} run dask worker tcp://{AGI._scheduler} --no-nanny --pid-file {wenv_rel.parent / pid_file}' asyncio.create_task(AGI.exec_ssh_async(ip, cmd)) logging.info(f"Launched remote worker in background on {ip}: {cmd}") except Exception as e: logging.error(f"Failed to start worker on {ip}: {e}") raise if AGI._worker_init_error: raise FileNotFoundError(f"Please run AGI.install([{ip}])") await AGI._sync(timeout=AGI.TIMEOUT) if not AGI._mode_auto or (AGI._mode_auto and AGI._mode == 0): # in case of core src has changed AGI._build_lib_local(is_local=True) await AGI._build_lib_remote() # if not (AGI._mode & AGI.DASK_MODE): # # load lib # for egg_file in (AGI.env.wenv_abs / "dist").glob("*.egg"): # AGI._dask_client.upload_file(str(egg_file)) @staticmethod async def _sync(timeout: int = 20) -> None: if not isinstance(AGI._dask_client, Client): return start = time.time() expected_workers = sum(AGI.workers.values()) while True: try: info = AGI._dask_client.scheduler_info() workers_info = info.get("workers") if workers_info is None: logging.info("Scheduler info 'workers' not ready yet.") await asyncio.sleep(3) if time.time() - start > timeout: logging.error(f"Timeout waiting for scheduler workers info.") sys.exit(1) continue runners = list(workers_info.keys()) current_count = len(runners) remaining = expected_workers - current_count if runners: logging.info(f"Current workers connected: {runners}") logging.info(f"Waiting for number of workers to attach: {remaining} remaining...") if current_count >= expected_workers: break if remaining <= 0: break if time.time() - start > timeout: logging.error("Timeout waiting for all workers. {remaining} workers missing.") sys.exit(1) await asyncio.sleep(1) except Exception as e: logging.info(f"Exception in _sync: {e}") await asyncio.sleep(1) if time.time() - start > timeout: raise TimeoutError(f"Timeout waiting for all workers due to exception: {e}") logging.info("All workers successfully attached to scheduler") @staticmethod async def _build_lib_local(is_local: bool = True) -> Path: """ Args: is_local: (Default value = True) Returns: """ env = AGI.env wenv = normalize_path(str(env.wenv_abs)) is_cy = AGI._mode & AGI.CYTHON_MODE packages = "agi_worker, " baseworker = env.base_worker_cls if baseworker.startswith("Agent"): packages += "agent_worker" elif baseworker.startswith("Dag"): packages += "dag_worker" elif baseworker.startswith("Pandas"): packages += "pandas_worker" elif baseworker.startswith("Polars"): packages += "polars_worker" app_path = env.app_abs wenv_abs = env.wenv_abs shutil.copy2(env.setup_core, app_path) cmd = f"{env.uv} --project {app_path} run python {env.setup_app} bdist_egg --packages \"{packages}\" --install_type {env.install_type} -d {wenv_abs}" await AgiEnv.run(cmd, app_path) dask_client = AGI._dask_client if dask_client: egg_files = list((wenv_abs / "dist").glob("*.egg")) for egg_file in egg_files: dask_client.upload_file(str(egg_file)) # compile in cython when cython is requested if is_local: cmd = f"{env.uv} --project {wenv_abs} pip install -e ." await AgiEnv.run(cmd, wenv_abs) if is_cy: # cython compilation of wenv/src into wenw shutil.copy2(env.setup_core, wenv_abs) cmd = f"{env.uv} --project {app_path} run python {env.setup_app} build_ext -b {wenv_abs}" res = await AgiEnv.run(cmd, app_path) try: worker_lib = next(iter((wenv_abs / 'dist').glob("*_cy.*")), None) except StopIteration: raise RuntimeError(cmd) platlib = sysconfig.get_path("platlib") platlib_idx = platlib.index('.venv') wenv_platlib = platlib[platlib_idx:] target_platlib = wenv_abs / wenv_platlib destination = os.path.join(target_platlib, os.path.basename(worker_lib)) # Copy the file while preserving metadata. destination_dir = os.path.dirname(destination) os.makedirs(destination_dir, exist_ok=True) # create directory if missing shutil.copy2(worker_lib, destination) logging.info(res) return wenv @staticmethod async def _build_lib_remote() -> None: """ workers init """ # worker if (AGI._dask_client.scheduler.pool.open == 0) and AGI._verbose: runners = list(AGI._dask_client.scheduler_info()["workers"].keys()) logging.info("warning: no scheduler found but requested mode is dask=1 => switch to dask") @staticmethod async def _run_local() -> Any: """ Returns: """ env = AGI.env env.has_rapids_hw = env.envars.get("127.0.0.1", "HAS_RAPIDS_HW") # check first that install is done if not (env.wenv_abs / ".venv").exists(): logging.info("Worker installlation not found") sys.exit(1) pid_file = "dask_worker_0.pid" current_pid = os.getpid() with open(pid_file, "w") as f: f.write(str(current_pid)) await AGI._kill(current_pid=current_pid, force=True) if AGI._mode & AGI.CYTHON_MODE: wenv_abs = env.wenv_abs cython_lib_path = Path(wenv_abs) # Look for any files or directories in the Cython lib path that match the "*cy*" pattern. cython_libs = list(cython_lib_path.glob("*cy*")) if cython_libs: lib_path = normalize_path(cython_libs[0]) else: AGI._build_lib_local(is_local=True) if env.debug: AgiWorker.new(env.app, mode=AGI._mode, verbose=AGI._verbose, args=AGI._args) res = AgiWorker.run(AGI.workers, mode=AGI._mode, verbose=AGI._verbose, args=AGI._args) else: cmd = ( f"{env.uv} run --project {env.wenv_abs} python -c \"from agi_core.workers.agi_worker import AgiWorker;" f"from dask.distributed import print;" f"AgiWorker.new('{env.app}', mode={AGI._mode}, verbose={AGI._verbose}, args={AGI._args});" f"res = AgiWorker.run({AGI.workers}, mode={AGI._mode}, verbose={AGI._verbose}, args={AGI._args});" f"print(res)\"" ) res = await AgiEnv.run_async(cmd, env.wenv_abs) if res: if isinstance(res, list): return res else: res_lines = res.split('\n') if len(res_lines) < 2: return res else: return res.split('\n')[-2] @staticmethod async def _run_by_mode() -> str: """ workers run calibration and targets job """ env = AGI.env # AGI distribute work on cluster AGI._dask_workers = [ worker.split("/")[-1] for worker in list(AGI._dask_client.scheduler_info()["workers"].keys()) ] logging.info(f"AGI run mode={AGI._mode} on {list(AGI._dask_workers)} ... ") AGI.workers, workers_tree, workers_tree_info = AgiManager.do_distrib( AGI._target_inst, env, AGI.workers ) AGI.workers_tree = workers_tree AGI.workers_tree_info = workers_tree_info AGI._scale_cluster() if AGI._mode == AGI.INSTALL_MODE: workers_tree AGI._dask_client.gather( [ AGI._dask_client.submit( AgiWorker.new, env.app, env= 0 if env.debug else None, mode=AGI._mode, verbose=AGI._verbose, worker_id=list(AGI._dask_workers).index(worker), worker=worker, args=AGI._args, workers=[worker], ) for worker in AGI._dask_workers ] ) await AGI._calibration() t = time.time() AGI._run_time = AGI._dask_client.run( AgiWorker.do_works, workers_tree, workers_tree_info, workers=AGI._dask_workers, ) runtime = time.time() - t logging.info(f"{env.mode2str(AGI._mode)} {runtime}") return f"{env.mode2str(AGI._mode)} {runtime}"
[docs] @staticmethod async def main(scheduler: Optional[str]) -> Any: cond_clean = True AGI._jobs = bg.BackgroundJobManager() if (AGI._mode & AGI.DEPLOYEMENT_MASK) == AGI.SIMULATE_MODE: # case simulate mode #0b11xxxx res = await AGI._run_local() elif AGI._mode >= AGI.INSTALL_MODE: # case install modes t = time.time() if AGI._mode & AGI.DASK_MODE: await AGI._install_cluster(scheduler) else: AGI._clean_dirs_local() await AGI._install(scheduler) res = time.time() - t elif (AGI._mode & AGI.DEPLOYEMENT_MASK) == AGI.SIMULATE_MODE: # case simulate mode #0b11xxxx res = await AGI._run_local() elif AGI._mode & AGI.DASK_MODE: await AGI._start(scheduler) res = await AGI._run_by_mode() AGI._update_model() # stop the cluster await AGI._stop() else: # case local run res = await AGI._run_local() AGI._clean_job(cond_clean) for p in AGI._sys_path_to_clean: if p in sys.path: sys.path.remove(p) return res
@staticmethod def _clean_job(cond_clean: bool) -> None: """ Args: cond_clean: Returns: """ # clean background job if AGI._jobs and cond_clean: if AGI._verbose: AGI._jobs.flush() else: with open(os.devnull, "w") as f, redirect_stdout(f), redirect_stderr(f): AGI._jobs.flush() @staticmethod def _scale_cluster() -> None: """Remove unnecessary workers""" if AGI._dask_workers: nb_kept_workers = {} workers_to_remove = [] for dask_worker in AGI._dask_workers: ip = dask_worker.split(":")[0] if ip in AGI.workers: if ip not in nb_kept_workers: nb_kept_workers[ip] = 0 if nb_kept_workers[ip] >= AGI.workers[ip]: workers_to_remove.append(dask_worker) else: nb_kept_workers[ip] += 1 else: workers_to_remove.append(dask_worker) if workers_to_remove: logging.info(f"unused workers: {len(workers_to_remove)}") for worker in workers_to_remove: AGI._dask_workers.remove(worker) @staticmethod async def _stop() -> None: """Stop the Dask workers and scheduler""" env = AGI.env logging.info("stop Agi fwk") i = 0 while len(AGI._dask_client.scheduler_info()["workers"]) and (i < AGI.TIMEOUT): i += 1 AGI._dask_client.retire_workers() await asyncio.sleep(1) if ( AGI._mode_auto and (AGI._mode == 7 or AGI._mode == 15) ) or not AGI._mode_auto: AGI._dask_client.shutdown() await env.close_all_connections()
[docs] @staticmethod def make_chunks( nchunk2: int, weights: List[Any], capacities: Optional[List[Any]] = None, verbose: int = 0, threshold: int = 12, ) -> List[List[List[Any]]]: """Partitions the nchunk2 weighted into n chuncks, in a smart way chunks and chunks_sizes must be left to None Args: nchunk2: list of number of chunks level 2 weights: the list of weight level2 capacities: the lnewist of workers capacity (Default value = None) verbose: whether to display run detail or not (Default value = 0) threshold: the number of nchunk2 max to run the optimal algo otherwise downgrade to suboptimal one (Default value = 12) weights: list: Returns: : list of chunk per mycode_worker containing list of works per my_code_worker containing list of chunks level 1 """ if not AGI.workers: AGI.workers = workers_default caps = [] if not capacities: for w in list(AGI.workers.values()): for j in range(w): caps.append(1) capacities = caps capacities = np.array(list(capacities)) if len(weights) > 1: if nchunk2 < threshold: logging.info(f"AGI.chunk_algo_optimal - workers capacities {capacities} - {nchunk2} works to be done") chunks = AGI._make_chunks_optimal(weights, capacities) else: logging.info(f"AGI.load_algo_fastest - workers capacities {capacities} - {nchunk2} works to be done") chunks = AGI._make_chunks_fastest(weights, capacities) return chunks else: return [ [ [ chk, ] for chk in weights ] ]
@staticmethod def _make_chunks_optimal( subsets: List[Any], chkweights: List[Any], chunks: Optional[List[Any]] = None, chunks_sizes: Optional[Any] = None ) -> Any: """Partitions subsets in nchk non-weighted chunks, in a slower but optimal recursive way Args: subsets: list of tuples ('label', size) chkweights: list containing the relative size of each chunk chunks: internal usage must be None (Default value = None) chunks_sizes: internal must be None (Default value = None) Returns: : list of chunks weighted """ racine = False best_chunks = None nchk = len(chkweights) if chunks is None: # 1ere execution chunks = [[] for _ in range(nchk)] chunks_sizes = np.array([0] * nchk) subsets.sort(reverse=True, key=lambda i: i[1]) racine = True if not subsets: # finished when all subsets are partitioned return [chunks, max(chunks_sizes)] # Optimisation: We check if the weighted difference between the biggest and the smalest chunk # is more than the weighted sum of the remaining subsets if max(chunks_sizes) > min( np.array(chunks_sizes + sum([i[1] for i in subsets])) / chkweights ): # If yes, we won't make the biggest chunk bigger by filling the smallest chunk smallest_chunk_index = np.argmin( chunks_sizes + sum([i[1] for i in subsets]) / chkweights ) chunks[smallest_chunk_index] += subsets chunks_sizes[smallest_chunk_index] += ( sum([i[1] for i in subsets]) / chkweights[smallest_chunk_index] ) return [chunks, max(chunks_sizes)] chunks_choices = [] chunks_choices_max_size = np.array([]) inserted_chunk_sizes = [] for i in range(nchk): # We add the next subset to the ith chunk if we haven't already tried a similar chunk if (chunks_sizes[i], chkweights[i]) not in inserted_chunk_sizes: inserted_chunk_sizes.append((chunks_sizes[i], chkweights[i])) subsets2 = deepcopy(subsets)[1:] chunk_pool = deepcopy(chunks) chunk_pool[i].append(subsets[0]) chunks_sizes2 = deepcopy(chunks_sizes) chunks_sizes2[i] += subsets[0][1] / chkweights[i] chunks_choices.append( AGI._make_chunks_optimal( subsets2, chkweights, chunk_pool, chunks_sizes2 ) ) chunks_choices_max_size = np.append( chunks_choices_max_size, chunks_choices[-1][1] ) best_chunks = chunks_choices[np.argmin(chunks_choices_max_size)] if racine: return best_chunks[0] else: return best_chunks @staticmethod def _make_chunks_fastest(subsets: List[Any], chk_weights: List[Any]) -> List[List[Any]]: """Partitions subsets in nchk weighted chunks, in a fast but non optimal way Args: subsets: list of tuples ('label', size) chk_weights: list containing the relative size of each chunk Returns: : list of chunk weighted """ nchk = len(chk_weights) subsets.sort(reverse=True, key=lambda j: j[1]) chunks = [[] for _ in range(nchk)] chunks_sizes = np.array([0] * nchk) for subset in subsets: # We add each subset to the chunk that will be the smallest if it is added to it smallest_chunk = np.argmin(chunks_sizes + (subset[1] / chk_weights)) chunks[smallest_chunk].append(subset) chunks_sizes[smallest_chunk] += subset[1] / chk_weights[smallest_chunk] return chunks @staticmethod async def _calibration() -> None: """ balancer calibration """ res_workers_info = AGI._dask_client.gather( [ AGI._dask_client.run( # AgiWorker.get_logs_and_result, AgiWorker.get_worker_info, AgiWorker.worker_id, workers=AGI._dask_workers, ) ] ) infos = {} for res in res_workers_info: for worker, info in res.items(): if info: logging.info(f"{worker}:{info}") infos[worker] = info AGI.workers_info = infos AGI._capacity = {} workers_info = {} for worker, info in AGI.workers_info.items(): ipport = worker.split("/")[-1] infos = list(AGI.workers_info[worker].values()) infos.insert(0, [AGI.workers[ipport.split(":")[0]]]) data = np.array(infos).reshape(1, 6) AGI._capacity[ipport] = AGI._capacity_predictor.predict(data)[0] info["label"] = AGI._capacity[ipport] workers_info[ipport] = info AGI.workers_info = workers_info cap_min = min(AGI._capacity.values()) workers_capacity = {} for ipport, pred_cap in AGI._capacity.items(): workers_capacity[ipport] = round(pred_cap / cap_min, 1) AGI._capacity = dict( sorted(workers_capacity.items(), key=lambda item: item[1], reverse=True) ) @staticmethod def _train_model(train_home: Path) -> None: """train the balancer model Args: train_home: Returns: """ data_file = train_home / AGI._capacity_data_file if data_file.exists(): balancer_csv = data_file else: raise FileNotFoundError(data_file) schema = { "nb_workers": pl.Int64, "ram_total": pl.Float64, "ram_available": pl.Float64, "cpu_count": pl.Float64, # Assuming CPU count can be a float "cpu_frequency": pl.Float64, "network_speed": pl.Float64, "label": pl.Float64, } # Read the CSV file with correct parameters df = pl.read_csv( balancer_csv, has_header=True, # Correctly identifies the header row skip_rows_after_header=2, # Skips the next two rows after the header schema_overrides=schema, # Applies the defined schema ignore_errors=False, # Set to True if you want to skip malformed rows ) # Get the list of column names columns = df.columns # Select all columns except the last one as features X = df.select(columns[:-1]).to_numpy() # Select the last column as the target variable y = df.select(columns[-1]).to_numpy().ravel() # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) AGI._capacity_predictor = RandomForestRegressor().fit(X_train, y_train) logging.info( f"AGI.balancer_train_mode - Accuracy of the prediction of the workers capacity = " f"{AGI._capacity_predictor.score(X_test, y_test)}" ) capacity_model = os.path.join(train_home, AGI._capacity_model_file) with open(capacity_model, "wb") as f: pickle.dump(AGI._capacity_predictor, f) @staticmethod def _update_model() -> None: """update the balancer model""" workers_rt = {} balancer_cols = [ "nb_workers", "ram_total", "ram_available", "cpu_count", "cpu_frequency", "network_speed", "label", ] for wrt in AGI._run_time: if isinstance(wrt, str): return worker = list(wrt.keys())[0] for w, info in AGI.workers_info.items(): if w == worker: info["run_time"] = wrt[w] workers_rt[w] = info current_state = deepcopy(workers_rt) for worker, data in workers_rt.items(): worker_cap = data["label"] # Capacité actuelle du mycode_wprker worker_rt = data["run_time"] # Temps d'exécution du mycode_worker # Calculer le delta de temps et mettre à jour la capacité pour chaque autre mycode_worker for other_worker, other_data in current_state.items(): if other_worker != worker: other_rt = other_data[ "run_time" ] # Temps d'exécution de l'autre mycode_worker delta = worker_rt - other_rt workers_rt[worker]["label"] -= ( 0.1 * worker_cap * delta / worker_rt / (len(current_state) - 1) ) else: workers_rt[worker]["nb_workers"] = int( AGI.workers[worker.split(":")[0]] ) for w, data in workers_rt.items(): del data["run_time"] df = pl.DataFrame(data) df = df[balancer_cols] if df[0, -1] and df[0, -1] != float("inf"): with open(AGI._capacity_data_file, "a") as f: df.write_csv( f, include_header=False, line_terminator="\r", ) else: raise RuntimeError(f"{w} workers AgiWorker.do_works failed") AGI._train_model(AGI.env.home_abs) @staticmethod def _exec_bg(cmd: str, cwd: str) -> None: """ Execute background command Args: cmd: the command to be run cwd: the current working directory Returns: """ AGI._jobs.new("subprocess.Popen(cmd, shell=True)", cwd=cwd) if not AGI._jobs.result(0): raise RuntimeError(f"running {cmd} at {cwd}")
[docs] @asynccontextmanager async def get_ssh_connection(ip: str, timeout_sec: int = 5): env = AGI.env if AgiEnv.is_local(ip): env.user = getpass.getuser() if not env.user: raise ValueError("SSH username is not configured. Please set 'user' in your .env file.") conn = AGI._ssh_connections.get(ip) if conn and not conn.is_closed(): yield conn return try: ssh_dir = Path("~/.ssh").expanduser() keys = [] for file in ssh_dir.iterdir(): if not file.is_file(): continue name = file.name if name.startswith('authorized_keys'): continue if name.startswith('known_hosts'): continue if name.startswith('id_') and name.endswith('.pub'): continue keys.append(str(file)) client_keys = keys if keys else None conn = await asyncio.wait_for( asyncssh.connect( ip, username=env.user, password=env.password, known_hosts=None, client_keys=client_keys, ), timeout=timeout_sec ) AGI._ssh_connections[ip] = conn yield conn except asyncio.TimeoutError: err_msg = f"Connection to {ip} timed out after {timeout_sec} seconds." logging.error(err_msg) raise except asyncssh.PermissionDenied: err_msg = f"Authentication failed for SSH user '{self.user}' on host {ip}." logging.error(err_msg) raise except OSError as e: if e.errno == errno.EHOSTUNREACH: err_msg = ( f"Unable to connect to {ip} on SSH port 22. " "Please check that the device is powered on, network cable connected, and SSH service running." ) raise ConnectionError(err_msg) elif e.errno in (errno.EACCES, errno.ECONNREFUSED): logging.error(str(e)) else: logging.error(str(e)) raise except asyncssh.Error as e: logging.error(e.command if hasattr(e, 'command') else "No command attribute") logging.error(e) raise except Exception as e: logging.error(f"Unexpected error while connecting to {ip}: {e}") raise
[docs] @staticmethod async def exec_ssh(ip: str, cmd: str) -> str: try: async with AGI.get_ssh_connection(ip) as conn: msg = f"[{ip}] {cmd}" if AgiEnv.verbose > 1 or AgiEnv.debug: logging.info(msg) result = await conn.run(cmd, check=True) stdout = result.stdout if isinstance(stdout, bytes): stdout = stdout.decode('utf-8', errors='replace') if AgiEnv.verbose > 1 or AgiEnv.debug: logging.info(f"[{ip}] {stdout.strip()}") return stdout.strip() except ConnectionError: raise except ProcessError as e: stdout = getattr(e, 'stdout', '') stderr = getattr(e, 'stderr', '') if isinstance(stdout, bytes): stdout = stdout.decode('utf-8', errors='replace') if isinstance(stderr, bytes): stderr = stderr.decode('utf-8', errors='replace') logging.error(f"Remote command stderr: {stderr.strip()}") raise except (asyncssh.Error, OSError) as e: logging.error(e) raise
[docs] @staticmethod async def exec_ssh_async(ip: str, cmd: str) -> str: """ Execute a remote command via SSH and return the last line of its stdout output. """ async with AGI.get_ssh_connection(ip) as conn: process = await conn.create_process(cmd) # Read entire stdout output as bytes stdout = await process.stdout.read() await process.wait() # Decode output safely #stdout_str = stdout.decode('utf-8', errors='replace') # Split output into lines and get the last non-empty line lines = [line.strip() for line in stdout.splitlines() if line.strip()] if lines: return lines[-1] else: return "" # or None if no output